

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # DP-GEN Manual

	## Table of Contents
	
	
	[DP-GEN Manual](#dp-gen-manual)
	
	[Table of Contents](#table-of-contents)

	
	[About DP-GEN](#about-dp-gen)
	
	[Highlighted features](#highlighted-features)

	[Code structure and interface](#code-structure-and-interface)

	[License and credits](#license-and-credits)

	[Download and Install](#download-and-install)

	
	[Init: Preparing Initial Data](#init-preparing-initial-data)
	
	[Init_bulk](#init_bulk)

	[Init_surf](#init_surf)

	[Run: Main Process of Generator](#run-main-process-of-generator)

	[Test: Auto-test for Deep Generator](#test-auto-test-for-deep-generator)

	[Set up machine](#set-up-machine)

	[Troubleshooting](#troubleshooting)

	[License](#license)

About DP-GEN

[![GitHub release](https://img.shields.io/github/release/deepmodeling/dpgen.svg?maxAge=86400)](https://github.com/deepmodeling/dpgen/releases/)
[![doi:10.1016/j.cpc.2020.107206](https://zenodo.org/badge/DOI/10.1016/j.cpc.2020.107206.svg)](https://doi.org/10.1016/j.cpc.2020.107206)

DP-GEN (Deep Generator) is a software written in Python, delicately designed to generate a deep learning based model of interatomic potential energy and force field. DP-GEN is depedent on DeepMD-kit (https://github.com/deepmodeling/deepmd-kit/blob/master/README.md). With highly scalable interface with common softwares for molecular simulation, DP-GEN is capable to automatically prepare scripts and maintain job queues on HPC machines (High Performance Cluster) and analyze results.

If you use this software in any publication, please cite:

Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 107206.

Highlighted features
+ Accurate and efficient: DP-GEN is capable to sample more than tens of million structures and select only a few for first principles calculation. DP-GEN will finally obtain a uniformly accurate model.
+ User-friendly and automatic: Users may install and run DP-GEN easily. Once succusefully running, DP-GEN can dispatch and handle all jobs on HPCs, and thus there’s no need for any personal effort.
+ Highly scalable: With modularized code structures, users and developers can easily extend DP-GEN for their most relevant needs. DP-GEN currently supports for HPC systems (Slurm, PBS, LSF and cloud machines), Deep Potential interface with DeePMD-kit, MD interface with LAMMPS and ab-initio calculation interface with VASP, PWSCF,SIESTA and Gaussian. We’re sincerely welcome and embraced to users’ contributions, with more possibilities and cases to use DP-GEN.

Code structure and interface
+ dpgen:

	data: source codes for preparing initial data of bulk and surf systems.

	generator: source codes for main process of deep generator.

	auto_test : source code for undertaking materials property analysis.

	remote : source code for automatically submiting scripts,maintaining job queues and collecting results.

	database : source code for collecting data generated by DP-GEN and interface with database.

	examples : providing example JSON files.

	tests : unittest tools for developers.

One can easily run DP-GEN with :
`
dpgen TASK PARAM MACHINE
`

where TASK is the key word, PARAM and MACHINE are both JSON files.

Options for TASK:
* init_bulk : Generating initial data for bulk systems.
* init_surf : Generating initial data for surface systems.
* run : Main process of Deep Generator.
* test: Auto-test for Deep Potential.
* db: Collecting data from DP-GEN.

Download and Install
One can download the source code of dpgen by
`bash
git clone https://github.com/deepmodeling/dpgen.git
`
then you may install DP-GEN easily by:
`bash
cd dpgen
pip install --user .
`
With this command, the dpgen executable is install to $HOME/.local/bin/dpgen. You may want to export the PATH by
`bash
export PATH=$HOME/.local/bin:$PATH
`
To test if the installation is successful, you may execute
`bash
dpgen -h
`
and if everything works, it gives
```
DeepModeling
————
Version: 0.5.1.dev53+gddbeee7.d20191020
Date:    Oct-07-2019
Path:    /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/dpgen-0.5.1.dev53+gddbeee7.d20191020-py3.6.egg/dpgen


Dependency





numpy     1.17.2   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/numpy




dpdata     0.1.10   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/dpdata-0.1.10-py3.6.egg/dpdata





	pymatgen   2019.7.2   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/pymatgen
	
	monty      2.0.4   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/monty
	ase     3.17.0   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/ase-3.17.0-py3.6.egg/ase









paramiko      2.6.0   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/paramiko




custodian  2019.2.10   /home/me/miniconda3/envs/py363/lib/python3.6/site-packages/custodian







Description

usage: dpgen [-h] {init_surf,init_bulk,run,run/report,test,db} …

dpgen is a convenient script that uses DeepGenerator to prepare initial data,
drive DeepMDkit and analyze results. This script works based on several sub-
commands with their own options. To see the options for the sub-commands, type
“dpgen sub-command -h”.


	positional arguments:
	
	{init_surf,init_bulk,run,run/report,test,db}
	init_surf           Generating initial data for surface systems.
init_bulk           Generating initial data for bulk systems.
run                 Main process of Deep Potential Generator.
run/report          Report the systems and the thermodynamic conditions of


the labeled frames.




test                Auto-test for Deep Potential.
db                  Collecting data from Deep Generator.







	optional arguments:
	
	-h, --help

	show this help message and exit









```

Init: Preparing Initial Data

Init_bulk

You may prepare initial data for bulk systems with VASP by:

`bash
dpgen init_bulk PARAM [MACHINE]
`
The MACHINE configure file is optional. If this parameter exists, then the optimization
tasks or MD tasks will be submitted automatically according to MACHINE.json.

Basically init_bulk can be devided into four parts , denoted as stages in PARAM:
1. Relax in folder 00.place_ele
2. Pertub and scale in folder 01.scale_pert
3. Run a shor AIMD in folder 02.md
4. Collect data in folder 02.md.

All stages must be in order. One doesn’t need to run all stages. For example, you may run stage 1 and 2, generating supercells as starting point of exploration in dpgen run.

If MACHINE is None, there should be only one stage in stages. Corresponding tasks will be generated, but user’s intervention should be involved in, to manunally run the scripts.

Following is an example for PARAM, which generates data from a typical structure hcp.
```json
{


“stages” : [1,2,3,4],
“cell_type”:    “hcp”,
“latt”:     4.479,
“super_cell”:   [2, 2, 2],
“elements”:     [“Mg”],
“potcars”:      [“……/POTCAR”],
“relax_incar”: “……/INCAR_metal_rlx”,
“md_incar” : “……/INCAR_metal_md”,
“scale”:        [1.00],
“skip_relax”:   false,
“pert_numb”:    2,
“md_nstep” : 5,
“pert_box”:     0.03,
“pert_atom”:    0.01,
“coll_ndata”:   5000,
“type_map” : [ “Mg”, “Al”],
“_comment”:     “that’s all”





}

If you want to specify a structure as starting point for init_bulk, you may set in PARAM as follows.

`json
"from_poscar":  true,
"from_poscar_path":     "....../C_mp-47_conventional.POSCAR",
`
The following table gives explicit descriptions on keys in PARAM.

The bold notation of key (such as Elements) means that it’s a necessary key.


Key  | Type          | Example                                                      | Discription                                                      |





:—————- | :——————— | :————————————– | :————————————————————-|

stages | List of Integer | [1,2,3,4] | Stages for init_bulk

Elements | List of String | [“Mg”] | Atom types


cell_type | String  | “hcp” | Specifying which typical structure to be generated. Options include fcc, hcp, bcc, sc, diamond.



latt | Float | 4.479 | Lattice constant for single cell.

from_poscar | Boolean | True | Deciding whether to use a given poscar as the beginning of relaxation. If it’s true, keys (cell_type, latt) will be aborted. Otherwise, these two keys are necessary.

from_poscar_path | String | “……/C_mp-47_conventional.POSCAR” | Path of POSCAR. Necessary if from_poscar is true.

relax_incar | String | “……/INCAR” | Path of INCAR for relaxation in VASP. Necessary if stages include 1.

md_incar | String |  “……/INCAR” | Path of INCAR for MD in VASP. Necessary if stages include 3.|

scale | List of float | [0.980, 1.000, 1.020] | Scales for transforming cells.

skip_relax | Boolean | False | If it’s true, you may directly run stage 2 (pertub and scale) using an unrelaxed POSCAR.

pert_numb | Integer | 30 | Number of pertubations for each POSCAR.

pert_box | Float | 0.03 | Percentage of Perturbation for cells.

pert_atom | Float | 0.01 | Pertubation of each atoms (Angstrom).

md_nstep | Integer | 10 | Steps of AIMD in stage 3. If it’s not equal to settings via NSW in md_incar, DP-GEN will follow NSW.

coll_ndata | Integer | 5000 | Maximal number of collected data.

type_map | List | [ “Mg”, “Al”] | The indices of elements in deepmd formats will be set in this order.



### Init_surf

You may prepare initial data for surface systems with VASP by:

`bash
dpgen init_surf PARAM [MACHINE]
`
The MACHINE configure file is optional. If this parameter exists, then the optimization
tasks or MD tasks will be submitted automatically according to MACHINE.json.

Basically init_surf can be devided into two parts , denoted as stages in PARAM:
1. Build specific surface in folder 00.place_ele
2. Pertub and scale in folder 01.scale_pert

All stages must be in order.

Following is an example for PARAM, which generates data from a typical structure hcp.
```json
{

	“stages”: [
	1,
2

],
“cell_type”: “fcc”,
“latt”: 4.034,
“super_cell”: [

2,
2,
2

],
“layer_numb”: 3,
“vacuum_max”: 9,
“vacuum_resol”: [

0.5,
1

],
“mid_point”: 4.0,
“millers”: [

	[
	1,
0,
0

],
[

1,
1,
0

],
[

1,
1,
1

]

],
“elements”: [

“Al”

],
“potcars”: [

“……/POTCAR”

],
“relax_incar”: “……/INCAR_metal_rlx_low”,
“scale”: [

1.0

],
“skip_relax”: true,
“pert_numb”: 2,
“pert_box”: 0.03,
“pert_atom”: 0.01,
“_comment”: “that’s all”

}

Another example is from_poscar method. Here you need to specify the POSCAR file.

```
{



	“stages”: [
	1,
2





],
“cell_type”: “fcc”,
“from_poscar”:        true,
“from_poscar_path”:   “POSCAR”,
“super_cell”: [


1,
1,
1




],
“layer_numb”: 3,
“vacuum_max”: 5,
“vacuum_resol”: [0.5,2],
“mid_point”: 2.0,
“millers”: [



	[
	1,
0,
0





]




],
“elements”: [


“Al”




],
“potcars”: [


“./POTCAR”




],
“relax_incar” : “INCAR_metal_rlx_low”,
“scale”: [


1.0




],
“skip_relax”: true,
“pert_numb”: 5,
“pert_box”: 0.03,
“pert_atom”: 0.01,
“coll_ndata”: 5000,
“_comment”: “that’s all”







}

The following table gives explicit descriptions on keys in PARAM.

The bold notation of key (such as Elements) means that it’s a necessary key.


Key  | Type          | Example                                                      | Discription                                                      |





:—————- | :——————— | :————————————– | :————————————————————-|

stages | List of Integer | [1,2,3,4] | Stages for init_surf

Elements | List of String | [“Mg”] | Atom types


cell_type | String  | “hcp” | Specifying which typical structure to be generated. Options include fcc, hcp, bcc, sc, diamond.



latt | Float | 4.479 | Lattice constant for single cell.

layer_numb | Integer | 3 | Number of equavilent layers of slab.

z__min | Float | 9.0 | Thickness of slab without vacuum (Angstrom). If the layer_numb and z_min are all setted, the z_min value will be ignored.

vacuum_max | Float | 9 | Maximal thickness of vacuum (Angstrom).

vacuum_min | Float | 3.0 | Minimal thickness of vacuum (Angstrom). Default value is 2 times atomic radius.

vacuum_resol | List of float | [0.5, 1 ] | Interval of thichness of vacuum. If size of vacuum_resol is 1, the interval is fixed to its value. If size of vacuum_resol is 2, the interval is vacuum_resol[0] before mid_point, otherwise vacuum_resol[1] after mid_point.

millers | List of list of Integer | [[1,0,0]] | Miller indices.

relax_incar | String | “……/INCAR” | Path of INCAR for relaxation in VASP. Necessary if stages include 1.

scale | List of float | [0.980, 1.000, 1.020] | Scales for transforming cells.

skip_relax | Boolean | False | If it’s true, you may directly run stage 2 (pertub and scale) using an unrelaxed POSCAR.

pert_numb | Integer | 30 | Number of pertubations for each POSCAR.

pert_box | Float | 0.03 | Percentage of Perturbation for cells.

pert_atom | Float | 0.01 | Pertubation of each atoms (Angstrom).

coll_ndata | Integer | 5000 | Maximal number of collected data.



## Run: Main Process of Generator

You may call the main process by:
dpgen run PARAM MACHINE.

The whole process of generator will contain a series of iterations, succussively undertaken in order such as heating the system to certain temperature.

In each iteration, there are three stages of work, namely, 00.train  01.model_devi  02.fp.


	00.train: DP-GEN will train several (default 4) models based on initial and generated data. The only difference between these models is the random seed for neural network initialization.


	01.model_devi : represent for model-deviation. DP-GEN will use models obtained from 00.train to run Molecular Dynamics(default LAMMPS). Larger deviation for structure properties (default is force of atoms) means less accuracy of the models. Using this criterion, a few fructures will be selected and put into next stage 02.fp for more accurate calculation based on First Principles.


	02.fp : Selected structures will be calculated by first principles methods(default VASP). DP-GEN will obtain some new data and put them together with initial data and data generated in previous iterations. After that a new training will be set up and DP-GEN will enter next iteration!




DP-GEN identifies the current stage by a record file, record.dpgen, which will be created and upgraded by codes.Each line contains two number: the first is index of iteration, and the second ,ranging from 0 to 9 ,records which stage in each iteration is currently running.

0,1,2 correspond to make_train, run_train, post_train. DP-GEN will write scripts in make_train, run the task by specific machine in run_train and collect result in post_train. The records for model_devi and fp stage follow similar rules.

In PARAM, you can specialize the task as you expect.

```json
{

	“type_map”: [
	“H”,
“C”

],
“mass_map”: [

1,
12

],
“init_data_prefix”: “……/init/”,
“init_data_sys”: [

“CH4.POSCAR.01x01x01/02.md/sys-0004-0001/deepmd”

],
“init_batch_size”: [

8

],
“sys_configs_prefix”: “……/init/”,
“sys_configs”: [

	[
	“CH4.POSCAR.01x01x01/01.scale_pert/sys-0004-0001/scale*/00000*/POSCAR”

],
[

“CH4.POSCAR.01x01x01/01.scale_pert/sys-0004-0001/scale*/00001*/POSCAR”

]

],
“sys_batch_size”: [

8,
8,
8,
8

],
“_comment”: ” that’s all “,
“numb_models”: 4,
“train_param”: “input.json”,
“default_training_param”: {

“_comment”: “that’s all”,
“use_smooth”: true,
“sel_a”: [

16,
4

],
“rcut_smth”: 0.5,
“rcut”: 5,
“filter_neuron”: [

10,
20,
40

],
“filter_resnet_dt”: false,
“n_axis_neuron”: 12,
“n_neuron”: [

100,
100,
100

],
“resnet_dt”: true,
“coord_norm”: true,
“type_fitting_net”: false,
“systems”: [],
“set_prefix”: “set”,
“stop_batch”: 40000,
“batch_size”: 1,
“start_lr”: 0.001,
“decay_steps”: 200,
“decay_rate”: 0.95,
“seed”: 0,
“start_pref_e”: 0.02,
“limit_pref_e”: 2,
“start_pref_f”: 1000,
“limit_pref_f”: 1,
“start_pref_v”: 0.0,
“limit_pref_v”: 0.0,
“disp_file”: “lcurve.out”,
“disp_freq”: 1000,
“numb_test”: 4,
“save_freq”: 1000,
“save_ckpt”: “model.ckpt”,
“load_ckpt”: “model.ckpt”,
“disp_training”: true,
“time_training”: true,
“profiling”: false,
“profiling_file”: “timeline.json”

},
“model_devi_dt”: 0.002,
“model_devi_skip”: 0,
“model_devi_f_trust_lo”: 0.05,
“model_devi_f_trust_hi”: 0.15,
“model_devi_clean_traj”: true,
“model_devi_jobs”: [

	{
	
	“sys_idx”: [
	0

],
“temps”: [

100

],
“press”: [

1.0

],
“trj_freq”: 10,
“nsteps”: 300,
“ensemble”: “nvt”,
“_idx”: “00”

},
{

	“sys_idx”: [
	1

],
“temps”: [

100

],
“press”: [

1.0

],
“trj_freq”: 10,
“nsteps”: 3000,
“ensemble”: “nvt”,
“_idx”: “01”

}

],
“fp_style”: “vasp”,
“shuffle_poscar”: false,
“fp_task_max”: 20,
“fp_task_min”: 1,
“fp_pp_path”: “……/methane/”,
“fp_pp_files”: [

“POTCAR”

],
“fp_incar”: “……/INCAR_methane”

}

The following table gives explicit descriptions on keys in PARAM.

The bold notation of key (such aas type_map) means that it’s a necessary key.

Key | Type | Example | Discription |

:—————- | :——————— | :————————————– | :————————————————————-|

#Basics

type_map | List of string | [“H”, “C”] | Atom types

mass_map | List of float | [1, 12] | Standard atom weights.

use_ele_temp | int | 0 | Currently only support fp_style vasp. 0(default): no electron temperature. 1: eletron temperature as frame parameter. 2: electron temperature as atom parameter.

#Data
| init_data_prefix | String | “/sharedext4/…/data/” | Prefix of initial data directories
| *init_data_sys* | List of string|[“CH4.POSCAR.01x01x01/…/deepmd”] |Directories of initial data. You may use either absolute or relative path here.
| *sys_format* | String | “vasp/poscar” | Format of initial data. It will be vasp/poscar if not set.
| init_multi_systems | Boolean | false | If set to true, init_data_sys directories should contain sub-directories of various systems. DP-GEN will regard all of these sub-directories as inital data systems.
| init_batch_size | String of integer | [8] | Each number is the batch_size of corresponding system for training in init_data_sys. One recommended rule for setting the sys_batch_size and init_batch_size is that batch_size mutiply number of atoms ot the stucture should be larger than 32. If set to auto, batch size will be 32 divided by number of atoms. |
 | sys_configs_prefix | String | “/sharedext4/…/data/” | Prefix of sys_configs
| sys_configs | List of list of string | [
[“/sharedext4/…/POSCAR”],
[“……/POSCAR”]
] | Containing directories of structures to be explored in iterations.Wildcard characters are supported here. |

sys_batch_size | List of integer | [8, 8] | Each number is the batch_size for training of corresponding system in sys_configs. If set to auto, batch size will be 32 divided by number of atoms. |

#Training

numb_models | Integer | 4 (recommend) | Number of models to be trained in 00.train. |

training_iter0_model_path | list of string | [“/path/to/model0_ckpt/”, …] | The model used to init the first iter training. Number of element should be equal to numb_models |

training_init_model | bool | False | Iteration > 0, the model parameters will be initilized from the model trained at the previous iteration. Iteration == 0, the model parameters will be initialized from training_iter0_model_path. |

default_training_param | Dict | {
…
”use_smooth”: true,
”sel_a”: [16, 4],
”rcut_smth”: 0.5,
”rcut”: 5,
”filter_neuron”: [10, 20, 40],
…
} | Training parameters for deepmd-kit in 00.train.
 You can find instructions from here: (https://github.com/deepmodeling/deepmd-kit)..
 We commonly let stop_batch = 200 * decay_steps. |

#Exploration

model_devi_dt | Float | 0.002 (recommend) | Timestep for MD |

model_devi_skip | Integer | 0 | Number of structures skipped for fp in each MD

model_devi_f_trust_lo | Float | 0.05 | Lower bound of forces for the selection.
| model_devi_f_trust_hi | Float | 0.15 | Upper bound of forces for the selection

model_devi_e_trust_lo | Float | 1e10 | Lower bound of energies for the selection. Recommend to set them a high number, since forces provide more precise information. Special cases such as energy minimization may need this. |

model_devi_e_trust_hi | Float | 1e10 | Upper bound of energies for the selection. |

model_devi_clean_traj | Boolean | true | Deciding whether to clean traj folders in MD since they are too large. |

model_devi_nopbc | Boolean | False | Assume open boundary condition in MD simulations. |

model_devi_activation_func | List of String | [“tanh”, “tanh”, “tanh”, “tanh”] | Set activation functions for models, length of the list should be the same as numb_models |

model_devi_jobs | [
{
”sys_idx”: [0],
”temps”:
[100],
”press”:
[1],
”trj_freq”:
10,
”nsteps”:
 1000,
 “ensembles”:
 “nvt”
},
…
] | List of dict | Settings for exploration in 01.model_devi. Each dict in the list corresponds to one iteration. The index of model_devi_jobs exactly accord with index of iterations |

model_devi_jobs[“sys_idx”] | List of integer | [0] | Systems to be selected as the initial structure of MD and be explored. The index corresponds exactly to the sys_configs. |

model_devi_jobs[“temps”] | List of integer | [50, 300] | Temperature (K) in MD

model_devi_jobs[“press”] | List of integer | [1,10] | Pressure (Bar) in MD

model_devi_jobs[“trj_freq”] | Integer | 10 | Frequecy of trajectory saved in MD. |

model_devi_jobs[“nsteps”] | Integer | 3000 | Running steps of MD. |

model_devi_jobs[“ensembles”] | String | “nvt” | Determining which ensemble used in MD, options include “npt” and “nvt”. |

model_devi_jobs[“neidelay”] | Integer | “10” | delay building until this many steps since last build |

model_devi_jobs[“taut”] | Float | “0.1” | Coupling time of thermostat (ps) |

model_devi_jobs[“taup”] | Float | “0.5” | Coupling time of barostat (ps)

#Labeling

fp_style | string | “vasp” | Software for First Principles. Options include “vasp”, “pwscf”, “siesta” and “gaussian” up to now. |

fp_task_max | Integer | 20 | Maximum of structures to be calculated in 02.fp of each iteration. |

fp_task_min | Integer | 5 | Minimum of structures to calculate in 02.fp of each iteration. |

fp_accurate_threshold | Float | 0.9999 | If the accurate ratio is larger than this number, no fp calculation will be performed, i.e. fp_task_max = 0. |

fp_accurate_soft_threshold | Float | 0.9999 | If the accurate ratio is between this number and fp_accurate_threshold, the fp_task_max linearly decays to zero. |

fp_cluster_vacuum | Float | None | If the vacuum size is smaller than this value, this cluster will not be choosen for labeling |

fp_style == VASP

fp_pp_path | String | “/sharedext4/…/ch4/” | Directory of psuedo-potential file to be used for 02.fp exists. |

fp_pp_files | List of string | [“POTCAR”] | Psuedo-potential file to be used for 02.fp. Note that the order of elements should correspond to the order in type_map. |

|**fp_incar** | String | "/sharedext4/../ch4/INCAR" | Input file for VASP. INCAR must specify KSPACING and KGAMMA.
|**fp_aniso_kspacing** | List of integer | [1.0,1.0,1.0] | Set anisotropic kspacing. Usually useful for 1-D or 2-D materials. Only support VASP. If it is setting the KSPACING key in INCAR will be ignored.
|cvasp| Boolean | true | If cvasp is true, DP-GEN will use Custodian to help control VASP calculation.
| fp_style == Gaussian
| use_clusters | Boolean | false | If set to true, clusters will be taken instead of the whole system. This option does not work with DeePMD-kit 0.x.
| cluster_cutoff**| Float | 3.5 | The cutoff radius of clusters if `use_clusters` is set to `true`.
| **fp_params | Dict | | Parameters for Gaussian calculation.
|**fp_params["keywords"]** | String or list | "mn15/6-31g** nosymm scf(maxcyc=512)" | Keywords for Gaussian input.
|**fp_params["multiplicity"]**| Integer or String | 1 | Spin multiplicity for Gaussian input. If set to auto, the spin multiplicity will be detected automatically. If set to frag, the “fragment=N” method will be used.
|**fp_params["nproc"]** | Integer| 4 | The number of processors for Gaussian input.
| fp_style == siesta
| use_clusters | Boolean | false | If set to true, clusters will be taken instead of the whole system. This option does not work with DeePMD-kit 0.x.
| cluster_cutoff**| Float | 3.5 | The cutoff radius of clusters if `use_clusters` is set to `true`.
| **fp_params | Dict | | Parameters for siesta calculation.
|**fp_params["ecut"]** | Integer | 300 | Define the plane wave cutoff for grid.
|**fp_params["ediff"]**| Float | 1e-4 | Tolerance of Density Matrix.
|**fp_params["kspacing"]** | Float| 0.4 | Sample factor in Brillouin zones.
|**fp_params["mixingweight"]** | Float| 0.05 | Proportion a of output Density Matrix to be used for the input Density Matrix of next SCF cycle (linear mixing).
|**fp_params["NumberPulay"]** | Integer| 5 | Controls the Pulay convergence accelerator.
| fp_style == cp2k
| user_fp_params | Dict | |Parameters for cp2k calculation. find detail in manual.cp2k.org. only the kind section must be set before use. we assume that you have basic knowledge for cp2k input.
| external_input_path | String | | Conflict with key:user_fp_params, use the template input provided by user, some rules should be followed, read the following text in detail.

	#### Rules for cp2k input at dictionary form
	Converting cp2k input is very simple as dictionary used to dpgen input. You just need follow some simple rule:

	kind section parameter must be provide

	replace keyword in cp2k as keyword in dict.

	replace keyword parameter in cp2k as value in dict.

	replace section name in cp2k as keyword in dict. . The corresponding value is a dict.

	repalce section parameter in cp2k as value with dict. keyword “_”

	repeat section in cp2k just need to be written once with repeat parameter as list.

If you want to use your own paramter, just write a corresponding dictionary. The COORD section will be filled by dpgen automatically, therefore do not include this in dictionary. The OT or Diagonalization section is require for semiconductor or metal system. For specific example, have a look on example directory.

	Here are examples for setting:
	```python

#minimal information you should provide for input
#other we have set other parameters in code, if you want to
#use your own paramter, just write a corresponding dictionary
“user_fp_params”:   {



	“FORCE_EVAL”:{
	
	“DFT”:{
	“BASIS_SET_FILE_NAME”: “path”,
“POTENTIAL_FILE_NAME”: “path”,
“SCF”:{


“OT”:{ “keyword”:”keyword parameter”, “keyword2”:”keyword parameter” }




}





}
“SUBSYS”:{



	“KIND”:{
	“_”: [“N”,”C”,”H”],
“POTENTIAL”: [“GTH-PBE-q5”,”GTH-PBE-q4”, “GTH-PBE-q1”],
“BASIS_SET”: [“DZVP-MOLOPT-GTH”,”DZVP-MOLOPT-GTH”,”DZVP-MOLOPT-GTH”]





}




}





}








#### Rules for use cp2k template input provided by user

See Full example template.inp and dpgen input parameter file in

tests/generator/cp2k_make_fp_files/exinput/template.inp and tests/generator/param-mgo-cp2k-exinput.json

Here is example for provide external input


	```python
	{
“_comment”: ” 02.fp “,

“fp_style”: “cp2k”,
“shuffle_poscar”: false,
“fp_task_max”: 100,
“fp_task_min”: 10,
“fp_pp_path”: “.”,
“fp_pp_files”: [],
“external_input_path”: “./cp2k_make_fp_files/exinput/template.inp”,
“_comment”: ” that’s all
}


```

the following essential section should be provided in user template

```


	&FORCE_EVAL
	# add this line if you need to fit virial
STRESS_TENSOR ANALYTICAL
&PRINT

&FORCES ON
&END FORCES
add this line if you need to fit virial
&STRESS_TENSOR ON
&END FORCES

&END PRINT
&SUBSYS

	&CELL
	ABC LEFT FOR DPGEN

&END CELL
&COORD
@include coord.xyz
&END COORD

&END SUBSYS

&END FORCE_EVAL
```

## Test: Auto-test for Deep Generator
###  configure and param.json
At this step, we assume that you have prepared some graph files like graph.*.pb and the particular pseudopotential POTCAR.

The main code of this step is
`
dpgen test PARAM MACHINE
`
where PARAM and MACHINE are both json files. MACHINE is the same as above.

The whole program contains a series of tasks shown as follows. In each task, there are three stages of work, generate, run and compute.
+ 00.equi:(default task) the equilibrium state


	01.eos: the equation of state


	02.elastic: the elasticity like Young’s module


	03.vacancy: the vacancy formation energy


	04.interstitial: the interstitial formation energy


	05.surf: the surface formation energy




Dpgen auto_test will auto make dir for each task it tests, the dir name is the same as the dir name. And the test results will in a plain text file named result. For example cat ./01.eos/Al/std-fcc/deepmd/result

We take Al as an example to show the parameter settings of param.json.
The first part is the fundamental setting for particular alloy system.
```json


“_comment”: “models”,
“potcar_map” : {

“Al” : “/somewhere/POTCAR”

},
“conf_dir”:”confs/Al/std-fcc”,
“key_id”:”API key of Material project”,
“task_type”:”deepmd”,
“task”:”eos”,


```

You need to add the specified paths of necessary POTCAR files in “potcar_map”. The different POTCAR paths are separated by commas.
Then you also need to add the folder path of particular configuration, which contains POSCAR file.
`
"confs/[element or alloy]/[std-* or mp-**]"
std-*: standard structures, * can be fcc, bcc, hcp and so on.
mp-**: ** means Material id from Material Project.
`
Usually, if you add the relative path of POSCAR as the above format,
dpgen test will check the existence of such file and automatically downloads the standard and existed configurations of the given element or alloy from Materials Project and stores them in confs folder, which needs the API key of Materials project.


	task_type contains 3 optional types for testing, i.e. vasp, deepmd and meam.


	task contains 7 options, equi, eos, elastic, vacancy, interstitial, surf and all. The option all can do all the tasks.




It is worth noting that the subsequent tasks need to rely on the calculation results of the equilibrium state, so it is necessary to give priority to the calculation of the equilibrium state while testing. And due to the stable consideration, we recommand you to test the equilibrium state of vasp before other tests.

The second part is the computational settings for vasp and lammps. According to your actual needs， you can choose to add the paths of specific INCAR or use the simplified INCAR by setting vasp_params. The priority of specified INCAR is higher than using vasp_params. The most important setting is to add the folder path model_dir of deepmd model and supply the corresponding element type map. Besides, dpgen test also is able to call common lammps packages, such as meam.
```json
“relax_incar”:”somewhere/relax_incar”,
“scf_incar”:”somewhere/scf_incar”,
“vasp_params”: {

“ecut”: 650,
“ediff”: 1e-6,
“kspacing”: 0.1,
“kgamma”: false,
“npar”: 1,
“kpar”: 1,
“_comment”: ” that’s all “

},
“lammps_params”: {

“model_dir”:”somewhere/example/Al_model”,
“type_map”:[“Al”],
“model_name”:false,
“model_param_type”:false

},


```
The last part is the optional settings for various tasks mentioned above. You can change the parameters according to actual needs.

param.json in a dictionary.


Fields  | Type  | Example | Discription  |

:—————- | :——————— | :————- | :—————-|

potcar_map | dict | {“Al”: “example/POTCAR”} |a  dict like { “element” : “position of POTCAR”  } |

conf_dir | path like string | “confs/Al/std-fcc” | the dir which contains vasp’s POSCAR  |

key_id | string| “DZIwdXCXg1fiXXXXXX” |the API key of Material project|

task_type | string | “vasp” | task type, one of deepmd vasp meam |

task | string or list | “equi” | task, one or several tasks from { equi, eos, elastic, vacancy, interstitial, surf } or all stands for all tasks  |

vasp_params| dict | seeing below | params relating to vasp INCAR|

lammps_params | dict| seeing below| params relating to lammps |



The keys in param[“vasp_params”] is shown below.


Fields  | Type  | Example | Discription  |

:—————- | :——————— | :—————- | :—————-|

ecut | real number | 650  | the plane wave cutoff for grid.  |

ediff | real number | 1e-6 |Tolerance of Density Matrix |

kspacing | real number | 0.1 | Sample factor in Brillouin zones |

kgamma | boolen | false | whether generate a Gamma centered grid |

npar | positive integer | 1 | the number of k-points that are to be treated in parallel  |

kpar | positive integer | 1 | the number of bands that are treated in parallel |



the keys in param[“lammps_params”].


Key  | Type  | Example | Discription  |

:—————- | :——————— | :————————————– | :————————————————————-|

model_dir | path like string | “example/Al_model” | the model dir which contains .pb file  |

type_map | list of string | [“Al”] | a list contains the element, usually useful for multiple element situation |

model_name | boolean |  false |  |

model_param_type | boolean |  false |  |



### auto_test tasks
#### 00.equi
```json


“_comment”:”00.equi”,
“store_stable”:true,


```
+ store_stable:(boolean) whether to store the stable energy and volume

param.json.


Field  | Type | Example | Discription |

:—————- | :——————— | :————————————– | :————————————————————-|

EpA(eV) | real number | -3.7468 | the potential energy of a atom|

VpA(A^3)| real number | 16.511| theEquilibrium volume of a atom  |



test results
`
conf_dir:        EpA(eV)  VpA(A^3)
confs/Al/std-fcc  -3.7468   16.511
`


Field  | Type | Example | Discription |

:—————- | :——————— | :————————————– | :————————————————————-|

EpA(eV) | real number | -3.7468 | the potential energy of a atom|

VpA(A^3)| real number | 16.511| theEquilibrium volume of a atom  |



#### 01.eos
```json


“_comment”: “01.eos”,
“vol_start”: 12,
“vol_end”: 22,
“vol_step”: 0.5,


```
+ vol_start, vol_end and vol_step determine the volumetric range and accuracy of the eos.

test results
`
conf_dir:confs/Al/std-fcc
VpA(A^3)  EpA(eV)
15.500   -3.7306
16.000   -3.7429
16.500   -3.7468
17.000   -3.7430
`


Field  | Type| Example| Discription  |

:—————- | :——————— | :————————————– | :————————————————————-|

EpA(eV) | list of real number | [15.5,16.0,16.5,17.0] | the potential energy of a atom in  quilibrium state|

VpA(A^3)| list of real number |[-3.7306, -3.7429, -3.746762, -3.7430] | the equilibrium volume of a atom  |



#### 02.elastic
```json


“_comment”: “02.elastic”,
“norm_deform”: 2e-2,
“shear_deform”: 5e-2,


```
+ norm_deform and shear_deform are the scales of material deformation.
This task uses the stress-strain relationship to calculate the elastic constant.

Key	Type	Example	Discription
norm_deform	real number	0.02	uniaxial deformation range
shear_deform	real number	0.05	shear deformation range

test results
`
conf_dir:confs/Al/std-fcc
130.50   57.45   54.45    4.24    0.00    0.00
57.61  130.31   54.45   -4.29   -0.00   -0.00
54.48   54.48  133.32   -0.00   -0.00   -0.00
4.49   -4.02   -0.89   33.78    0.00   -0.00
-0.00   -0.00   -0.00   -0.00   33.77    4.29
0.00   -0.00   -0.00   -0.00    4.62   36.86
# Bulk   Modulus BV = 80.78 GPa
# Shear  Modulus GV = 36.07 GPa
# Youngs Modulus EV = 94.19 GPa
# Poission Ratio uV = 0.31
`


Field  | Type | Example | Discription |

:—————- | :——————— | :————————————– | :————————————————————-|

elastic module(GPa)| 6*6 matrix of real number| [[130.50   57.45   54.45    4.24    0.00    0.00] [57.61  130.31   54.45   -4.29   -0.00   -0.00]  [54.48   54.48  133.32   -0.00   -0.00   -0.00]   [4.49   -4.02   -0.89   33.78    0.00   -0.00]  [-0.00   -0.00   -0.00   -0.00   33.77    4.29] [0.00   -0.00   -0.00   -0.00    4.62   36.86]]| Voigt-notation elastic module;sequence of row and column is (xx, yy, zz, yz, zx, xy)|

bulk modulus(GPa) | real number | 80.78 | bulk modulus |

shear modulus(GPa) | real number | 36.07 | shear modulus |

Youngs Modulus(GPa) | real number | 94.19 | Youngs Modulus|

Poission Ratio | real number | 0.31 | Poission Ratio  |



#### 03.vacancy
```json


“_comment”:”03.vacancy”,
“supercell”:[3,3,3],


```
+ supercell:(list of integer) the supercell size used to generate vacancy defect and interstitial defect

Key	Type	Example	Discription
supercell	list of integer	[3,3,3]	the supercell size used to generate vacancy defect and interstitial defect

test result
`
conf_dir:confs/Al/std-fcc
Structure:      Vac_E(eV)  E(eV) equi_E(eV)
struct-3x3x3-000:   0.859  -96.557 -97.416
`
Field	Type	Example	Discription
:—————-	:———————	:————————————–	:————————————————————-
Structure	list of string	['struct-3x3x3-000']	structure name
Vac_E(eV)	real number	0.723	the vacancy formation energy
E(eV)	real number	-96.684	potential energy of the vacancy configuration
equi_E(eV)	real number	-97.407	potential energy of the equilibrium state

#### 04.interstitial
```json


“_comment”:”04.interstitial”,
“insert_ele”:[“Al”],
“reprod-opt”:false,


```
+ insert_ele:(list of string) the elements used to generate point interstitial defect
+ repord-opt:(boolean) whether to reproduce trajectories of interstitial defect

Key	Type	Example	Discription
insert_ele	list of string	[“Al”]	the elements used to generate point interstitial defect
reprod-opt	boolean	false	whether to reproduce trajectories of interstitial defect

test result
`
conf_dir:confs/Al/std-fcc
Insert_ele-Struct: Inter_E(eV)  E(eV) equi_E(eV)
struct-Al-3x3x3-000:   3.919  -100.991 -104.909
struct-Al-3x3x3-001:   2.681  -102.229 -104.909
`
Field	Type	Example	Discription
:—————-	:———————	:————————————–	:————————————————————-
Structure	string	'struct-Al-3x3x3-000'	structure name
Inter_E(eV)	real number	0.723	the interstitial formation energy
E(eV)	real number	-96.684	potential energy of the interstitial configuration
equi_E(eV)	real number	-97.407	potential energy of the equilibrium state

#### 05.surface


	```json
	“_comment”: “05.surface”,
“min_slab_size”: 10,
“min_vacuum_size”: 11,
“_comment”: “pert xz to work around vasp bug…”,
“pert_xz”: 0.01,
“max_miller”: 2,
“static-opt”:false,
“relax_box”:false,


```
+ min_slab_size and min_vacuum_size are the minimum size of slab thickness  and  the vacuume width.
+ pert_xz is the perturbation through xz direction used to compute surface energy.
+ max_miller (integer) is the maximum miller index
+ static-opt:(boolean) whether to use atomic relaxation to compute surface energy. if false, the structure will be relaxed.
+ relax_box:(boolean) set true if the box is relaxed, otherwise only relax atom positions.

|Key  | Type  | Example | Discription  |
| :---------------- | :--------------------- | :-------------------------------------- | :-------------------------------------------------------------|
| min_slab_size| real number| 10 |  the minimum size of slab thickness |
|min_vacuum_size | real number| 11 |  the minimum size of  the vacuume width |
|pert_xz  | real number| 0.01 |  the perturbation through xz direction used to compute surface energy |
|max_miller  | integer| 2 |  the maximum miller index |
|static-opt|boolean| false | whether to use atomic relaxation to compute surface energy. if false, the structure will be relaxed. |
|relax_box | boolean | false | set true if the box is relaxed, otherwise only relax atom positions |

test result
`
conf_dir:confs/Al/std-fcc
Miller_Indices:         Surf_E(J/m^2) EpA(eV) equi_EpA(eV)
struct-000-m1.1.1m:        0.673     -3.628   -3.747
struct-001-m2.2.1m:        0.917     -3.592   -3.747
`
| Field  | Type | Example| Discription|
| :—————- | :——————— | :————————————– | :————————————————————-|
|Miller_Indices| string | struct-000-m1.1.1m | Miller Indices|
|Surf_E(J/m^2)| real number | 0.673 | the surface formation energy |
| EpA(eV) | real number | -3.628 | potential energy of the surface configuration |
| equi_EpA | real number | -3.747 | potential energy of the equilibrium state|

### The content of the auto_test
To know what actually will dpgen autotest do, including the lammps and vasp script, the input file and atom configuration file auto_test will generate, please refer to https://hackmd.io/@yeql5ephQLaGJGgFgpvIDw/rJY1FO92B

## Simplify
When you have a dataset containing lots of repeated data, this step will help you simplify your dataset. The workflow contains three stages: train, model_devi, and fp. The train stage and the fp stage are as the same as the run step, and the model_devi stage will calculate model deviations of the rest data that has not been confirmed accurate. Data with small model deviations will be confirmed accurate, while the program will pick data from those with large model deviations to the new dataset.

Use the following script to start the workflow:
`bash
dpgen simplify param.json machine.json
`

Here is an example of param.json for QM7 dataset:
```json
{

	“type_map”: [
	“C”,
“H”,
“N”,
“O”,
“S”

],
“mass_map”: [

12.011,
1.008,
14.007,
15.999,
32.065

],
“pick_data”: “/scratch/jz748/simplify/qm7”,
“init_data_prefix”: “”,
“init_data_sys”: [],
“sys_batch_size”: [

“auto”

],
“numb_models”: 4,
“train_param”: “input.json”,
“default_training_param”: {

	“model”: {
	
	“type_map”: [
	“C”,
“H”,
“N”,
“O”,
“S”

],
“descriptor”: {

“type”: “se_a”,
“sel”: [

7,
16,
3,
3,
1

],
“rcut_smth”: 1.00,
“rcut”: 6.00,
“neuron”: [

25,
50,
100

],
“resnet_dt”: false,
“axis_neuron”: 12

},
“fitting_net”: {

	“neuron”: [
	240,
240,
240

],
“resnet_dt”: true

}

},
“learning_rate”: {

“type”: “exp”,
“start_lr”: 0.001,
“decay_steps”: 10,
“decay_rate”: 0.99

},
“loss”: {

“start_pref_e”: 0.02,
“limit_pref_e”: 1,
“start_pref_f”: 1000,
“limit_pref_f”: 1,
“start_pref_v”: 0,
“limit_pref_v”: 0,
“start_pref_pf”: 0,
“limit_pref_pf”: 0

},
“training”: {

“set_prefix”: “set”,
“stop_batch”: 10000,
“disp_file”: “lcurve.out”,
“disp_freq”: 1000,
“numb_test”: 1,
“save_freq”: 1000,
“save_ckpt”: “model.ckpt”,
“load_ckpt”: “model.ckpt”,
“disp_training”: true,
“time_training”: true,
“profiling”: false,
“profiling_file”: “timeline.json”

},
“_comment”: “that’s all”

},
“use_clusters”: true,
“fp_style”: “gaussian”,
“shuffle_poscar”: false,
“fp_task_max”: 1000,
“fp_task_min”: 10,
“fp_pp_path”: “/home/jzzeng/”,
“fp_pp_files”: [],
“fp_params”: {

“keywords”: “mn15/6-31g** force nosymm scf(maxcyc=512)”,
“nproc”: 28,
“multiplicity”: 1,
“_comment”: ” that’s all “

},
“init_pick_number”:100,
“iter_pick_number”:100,
“e_trust_lo”:1e10,
“e_trust_hi”:1e10,
“f_trust_lo”:0.25,
“f_trust_hi”:0.45,
“_comment”: ” that’s all “

}

Here pick_data is the data to simplify and currently only supports MultiSystems containing System with deepmd/npy format, and use_clusters should always be true. init_pick_number and iter_pick_number are the numbers of picked frames. e_trust_lo, e_trust_hi mean the range of the deviation of the frame energy, and f_trust_lo and f_trust_hi mean the range of the max deviation of atomic forces in a frame. fp_style can only be gaussian currently. Other parameters are as the same as those of generator.

Set up machine
When switching into a new machine, you may modifying the MACHINE, according to the actual circumstance. Once you have finished, the MACHINE can be re-used for any DP-GEN tasks without any extra efforts.

An example for MACHINE is:
```json
{



	“train”: [
	
	{
	
	“machine”: {
	“machine_type”: “slurm”,
“hostname”: “localhost”,
“port”: 22,
“username”: “Angus”,
“work_path”: “……/work”





},
“resources”: {


“numb_node”: 1,
“numb_gpu”: 1,
“task_per_node”: 4,
“partition”: “AdminGPU”,
“exclude_list”: [],
“source_list”: [


“……/train_tf112_float.env”




],
“module_list”: [],
“time_limit”: “23:0:0”,
“qos”: “data”




},
“deepmd_path”: “……/tf1120-lowprec”





}





],
“model_devi”: [



	{
	
	“machine”: {
	“machine_type”: “slurm”,
“hostname”: “localhost”,
“port”: 22,
“username”: “Angus”,
“work_path”: “……/work”





},
“resources”: {


“numb_node”: 1,
“numb_gpu”: 1,
“task_per_node”: 2,
“partition”: “AdminGPU”,
“exclude_list”: [],
“source_list”: [


“……./lmp_tf112_float.env”




],
“module_list”: [],
“time_limit”: “23:0:0”,
“qos”: “data”




},
“command”: “lmp_serial”,
“group_size”: 1





}




],
“fp”: [



	{
	
	“machine”: {
	“machine_type”: “slurm”,
“hostname”: “localhost”,
“port”: 22,
“username”: “Angus”,
“work_path”: “……/work”





},
“resources”: {


“task_per_node”: 4,
“numb_gpu”: 1,
“exclude_list”: [],
“with_mpi”: false,
“source_list”: [],
“module_list”: [


“mpich/3.2.1-intel-2017.1”,
“vasp/5.4.4-intel-2017.1”,
“cuda/10.1”




],
“time_limit”: “120:0:0”,
“partition”: “AdminGPU”,
“_comment”: “that’s All”




},
“command”: “vasp_gpu”,
“group_size”: 1





}




]







}

Following table illustrates which key is needed for three types of machine: train,`model_devi`  and fp. Each of them is a list of dicts. Each dict can be considered as an independent environmnet for calculation.


Key   | train          | model_devi                                                    | fp                                                     |





:—————- | :——————— | :————————————– | :————————————————————-|

machine | NEED  | NEED | NEED

resources | NEED | NEED | NEED

deepmd_path | NEED |

command |  |NEED |  NEED |

group_size | | NEED | NEED |



The following table gives explicit descriptions on keys in param.json.


Key   | Type       | Example                                                  | Discription                                                     |





:—————- | :——————— | :————————————– | :————————————————————-|



|deepmd_path | String |"......tf1120-lowprec" | Installed directory of DeepMD-Kit 0.x, which should contain `bin lib include`.
| python_path | String | "....../python3.6/bin/python" | Python path for DeePMD-kit 1.x installed. This option should not be used with `deepmd_path` together.
| machine | Dict | | Settings of the machine for TASK.
| resources | Dict | | Resources needed for calculation.
| # Followings are keys in resources
| numb_node | Integer | 1 | Node count required for the job
| task_per_node | Integer | 4 | Number of CPU cores required
| numb_gpu | Integer | Integer | 4 | Number of GPUs required
| manual_cuda_devices | Interger | 1 | Used with key "manual_cuda_multiplicity" specify the gpu number
| manual_cuda_multiplicity |Interger | 5 | Used in 01.model_devi,used with key "manual_cuda_devices" specify the MD program number running on one GPU  at the same time,dpgen will  automatically allocate MD jobs on different GPU. This can improve GPU usage for GPU like V100.
| node_cpu | Integer | 4 | Only for LSF. The number of CPU cores on each node that should be allocated to the job.
| source_list | List of string | "....../vasp.env" | Environment needed for certain job. For example, if "env" is in the list, 'source env' will be written in the script.
| module_list | List of string | [ "Intel/2018", "Anaconda3"] | For example, If "Intel/2018" is in the list, "module load Intel/2018" will be written in the script.
| partition | String  | "AdminGPU" | Partition / queue in which to run the job. |
| time_limit | String (time format) | 23:00:00 | Maximal time permitted for the job |
mem_limit | Interger | 16 | Maximal memory permitted to apply for the job.
| with_mpi | Boolean | true | Deciding whether to use mpi for calculation. If it's true and machine type is Slurm, "srun" will be prefixed to `command` in the script.
| qos | "string"| “bigdata” | Deciding priority, dependent on particular settings of your HPC.
| allow_failure | Boolean | false | Allow the command to return a non-zero exit code.
| # End of resources
| command | String | “lmp_serial” | Executable path of software, such as lmp_serial, lmp_mpi and vasp_gpu, vasp_std, etc.
| group_size | Integer | 5 | DP-GEN will put these jobs together in one submitting script.

## Troubleshooting
1. The most common problem is whether two settings correspond with each other, including:



	The order of elements in type_map and mass_map and `fp_pp_files`.


	Size of init_data_sys and init_batch_size.


	Size of sys_configs and sys_batch_size.


	Size of sel_a and actual types of atoms in your system.


	Index of sys_configs and sys_idx








	Please verify the directories of sys_configs. If there isnt’s any POSCAR for 01.model_devi in one iteration, it may happen that you write the false path of sys_configs.


	Correct format of JSON file.


	In 02.fp, total cores you require through task_per_node should be devided by npar times kpar.




5. The frames of one system should be larger than batch_size and numb_test in default_training_param. It happens that one iteration adds only a few structures and causes error in next iteration’s training. In this condition, you may let fp_task_min be larger than numb_test.
## License
The project dpgen is licensed under [GNU LGPLv3.0](./LICENSE).







            

          

      

      

    

  

    
      
          
            
  #Parameters
SYSTEM  =  dpgen
PREC    =  A
ISART   =  0
ICHARG  =  2
#Electronic Relaxation
ENCUT   =  650
NELM    =  100
NELMIN  =  6
NELMDL  =  -5
EDIFF   =  1e-06
LREAL   =  False
ALGO    =  Fast  # or normal
#Ionic relaxation
IBRION  =  0
ISIF    =  2
#EDIFFG  =  -0.01  # useless for MD
ISYM    =  0
NSW     =  10
ISMEAR  =  0
SIGMA   =  0.1
# MD related
SMASS   = 0
POTIM   = 2
TEBEG   = 100
TEEND   = 100
NBLOCK  = 1
KBLOCK  = 100
# Write flags
LWAVE    =  False
LCHARG   =  False
#parallel related
#KPAR   = 4
#NPAR    =  1
KSPACING = 0.1
KGAMMA  = False

PSTRESS = 0.0



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





